Hello all has anyone here had any experience with the Rna drops being advertised on various alternitave media sites? Any thoughts or experience with this product?
Tags:
It seems like its worth the try It looks to be like it could be what is missing in many person's diets! I am on the synergy diet which I am very pleased with. If you ask me they are the best and most complete nutritional supplements out there!
Here's the link if you want to check it out: http://www.thesynergycompany.com
Hey, thank you for yhe reply Elon-Str 9 very helpfull indeed.
Sounds incredible, I will look into it more :)
Hi there brothers, good post & feedback.
I have the 30 day free trial bottle of RNA which I have been semi using, not persistently as I too was not sure about them, But thank you both for the knowledge, I will take them consistently from now on. I thought I might try it in distilled water? may that help saturate myself with it?
Thank You, Wholeness
In lak'ech
Hello Lawson,
From all i have studied on the RNA drops, and personal experience you do not need to add them to anything as they work on a molecular level and do not require any kind of assistance for saturation. The sublingual application is mor than sufficient as long as you follow the instructions of usage.
Just ask Bob.
Thanks, Deborah Norris however when i posted this i was looking for other non biased opinions by people not involved with the manufacturing of the product.
Rna drops looks a lot like the word ma when written in lower case (rna=ma)
Ribonucleic acid :
|
http://www.squidoo.com/rna-drops-the-bread-of-living-water
http://informationfarm.blogspot.com/2011/03/ion-rna-drops-bread-of-...
|
|
RNA ON THE EARLY EARTH
According to the RNA World Hypothesis, RNA was a key molecule that was utilized by the earliest life on Earth to store genetic information and to catalyze chemical reactions. This raises the question, however, of how RNA formed under prebiotic conditions on the early Earth. In fact, the issue of the complete synthesis of RNA nucleotides has been a major stumbling block for the RNA World Hypothesis. The sugar found in the backbone of both DNA and RNA, ribose, has been particularly problematic, as the most prebiotically plausible chemical reaction schemes have typically yielded only a small amount of ribose mixed with a diverse assortment of other sugar molecules.
These difficulties have led some scientists to hypothesize that RNA was preceded by other RNA-like molecules that were more stable and readily synthesized under prebiotic conditions. Based on analyses of meteorites, such as the Murchison meteorite, other scientists contest that some components of RNA may have formed in space and arrived on Earth rather than being formed de novo on the Earth.
Recent research has shown, however, that RNA nucleotides can be formed without the need for pure ribose. Importantly, the starting materials for the reaction can utilize starting materials that are considered prebiotically plausible, and provide high yields of RNA nucleotides. These results have greatly bolstered the argument that RNA nucleotides may have been found in abundance on the early Earth.
RNA nucleotides may have polymerized into polymers with the help of clay particles such as montmorillonite. This animation is based on research done by James Ferris' lab at Rensselaer Polytechnic Institute. This animation shows the process of template-directed polymerization. This reaction is made possible by chemically activating the nucleotides, thereby increasing their reactivity. A theoretical replicase ribozyme is shown replicating another replicase (which is unfolded). The newly formed duplex can undergo strand separation and refolding under the correct conditions. The ribozyme structure is actually a class I RNA ligase (PDB #1QXI ), isolated by the Bartel group at MIT.
PREBIOTIC RNA POLYMERIZATION
Assuming the presence of pools of RNA nucleotides, how did long strands of RNA form on the early Earth? Ribozyme function is likely to require strands of RNAs that are composed of at least 30-40 nucleotides. Research from James Ferris' group at Rensselaer Polytechnic Institute suggests that the formation of long strands of RNA may have been catalyzed by clays such as montmorillonite. The charged clay surface attracts the nucleotides and the increased local concentration of nucleotides causes bond formation between nucleotides, forming a polymer of RNA (illustrated in the animation on left).
Another possibility is that strands of RNA could have formed in salty ice water. David Deamer's lab at the University of California at Santa Cruz has found that the process of freezing a dilute solution of chemically activated RNA nucleotides causes the nucleotides to become concentrated as ice crystals form, eventually resulting in the formation of strands of RNA.
PREBIOTIC RNA REPLICATION
Even in the absence of enzymatic catalysts, single-stranded RNAs may have been able to copy strands of RNA through template-directed polymerization. This process is shown in the animation on the left, and is based on experiments performed in Jack Szostak's Lab (MGH/Harvard) using chemically activated nucleotides.
This process of non-enzymatic replication, however, is likely to have been slow and error-prone. Eventually, this mechanism of RNA replication is likely to have been replaced by a more reliable catalyst, such as a ribozyme. Scientists hypothesize that a ribozyme that was capable of making copies of other RNAs, called a replicase, evolved very early in life's history.
The animation on the lower left shows a theoretical replicase copying a template strand of RNA. While the structure of the replicase shown in the animation is based on an existing ribozyme that is capable of carrying out the basic steps of a replication reaction, a true replicase that is capable of copying an RNA of its own length has not yet been isolated in a laboratory. It is also possible that a replicase could be built from multiple short pieces of RNA rather than a single long strand.
Under the proper temperature and salt conditions, double-stranded RNA can undergo strand separation. Since the two strands are complements of each other (and not exact duplicates), only one of the two strands will be able to refold into an active replicase. The other strand can act as a template for further rounds of replication to create more replicases.
Next: The role of membranes in the protocell.
To learn more about RNA, check out Links to Learn More.
To download any of the illustrations or animations seen here, visit the Resources for Educators section.
|
|
|
|
About the Exploring Origins Project \\ Resources for Educators \\ Links to Learn More |
© 2019 Created by Sevan Bomar.
Powered by