https://www.youtube.com/watch?v=dbh5l0b2-0o&feature=related
'God is in The Neurons' makes important correlations about mirror neurons, neuroplasticity, memory, social dynamics, evolution, altruism and identity.
Notes:
I love this.
This is ridiculous; ‘survival of the fittest’ still applies but now applies (as it always should have) to superpositions of all organisms and superorganismal structure.
Tags:
yea now were getting somewhere
We are a global network of neurochemical reactions. And the self-amplifying cycle of acceptance and acknowledgment, sustained by the daily choices in our interactions, is the chain-reaction that will ultimately define our collective ability to overcome imagined differences
neuron related to a neutron? and a nutrino? this is the mirror reflecting back
Your Brain is NOT a Computer!!!
http://www.viewzone.com/plasticbrain22.html
Mark Miller, a doctoral student at Brandeis University, stained thin slices of a mouses brain to show how neurons are connected to one another [above left]. The image shows three neuron cells (two yellow and one red) and their connections. The synapses are too small to be visible. The image on the right was developed by a group of astrophysicists, using a supercomputer, to simulate the origins and evolution of the universe. The bright clusters are full of galaxies, surrounded by thousands of stars, more galaxies and dark matter.
These similar phenomena are examples of fractal networks, where information and energy are distributed through a distinct pattern, interconnected on a microcosmic and macrocosmic scale. And the similarities are even more significant.
As we shall see, astrophysicists are just now moving away from the gravitational model in favor of theories that consider electric fields and plasma as the new paradigm (the so-called "electric universe") to explain the evolution and maintenance of our universe. Neuroscientists are also beginning to experience their own paradigm shifts from "brain switches" to electric field theories!
But wait... there's more!
While the immensely complex synapse was still causing slack jaws, neuroscientists uncovered strong evidence that neurons also communicate with each other through weak electric fields. The study, published in the journal Nature Neuroscience, by Dr Costas Anastassiou (Caltech), explains how every time an electrical impulse races down the branch of a neuron, a tiny electric field surrounds that cell. This phenomenon was expected, since any conductor carrying an electrical current generates a field. But until now, the significance of this neuron field was thought to be negligible. The focus in neurology has always been on the end of the neuron -- the synapse -- where the mechanistic "switch" model explained neural communication so well.
"I think this is a very exciting new discovery. We knew that weak electric fields can impact brain activity, but what no one had really tested before was whether electric fields produced by the brain itself can influence its own activity." --Ole Paulsen, a neuroscientist at the University of Cambridge
The Caltech study showed that when just a few neurons were generating electrical fields, the effects were hardly noticeable. But when a group of neurons fire together, their collective fields were very significant, functioning to coordinate, accelerate and potentiate the neural activity.
"We observed that fields as weak as one millivolt per millimetre robustly alter the firing of individual neurons, and increase the so-called 'spike-field coherence' -- the synchronicity with which neurons fire with relationship to the field.
© 2024 Created by Sevan Bomar. Powered by